Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables.
نویسندگان
چکیده
As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphology-elasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography (μCT) reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae, and iliac crest were analyzed. Their morphology was assessed via 25 variables and their stiffness tensor (CFE) was computed from six independent load cases using micro finite element (μFE) analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multiple linear regression model of the dependent variable CFE. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of CFE(r(2) adj = 0.889), especially in combination with fabric anisotropy (r(2) adj = 0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (r(2) adj = 0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric anisotropy further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric anisotropy are the best determinants of trabecular bone stiffness and show, against common belief, that other morphological variables do not bring any further contribution. These overall conclusions remain to be confirmed for specific bone diseases and postelastic properties.
منابع مشابه
Increase in bone volume fraction precedes architectural adaptation in growing bone.
In mature trabecular bone, both density and trabecular orientation are adapted to external mechanical loads. Few quantitative data are available on the development of architecture and mechanical adaptation in juvenile trabecular bone. We studied the hypothesis that a time lag occurs between the adaptation of trabecular density and the adaptation of trabecular architecture during development. To...
متن کاملIdentification of elastic properties of human patellae using micro-finite element analysis.
Current homogenized finite element (hFE) models of the patella lack a validated material law and mostly overlook trabecular anisotropy. The objective of this study was to identify the elastic constants of patellar trabecular bone. Using μCT scans of 20 fresh-frozen cadaveric patellae, we virtually extracted 200 trabecular cubes (5.3mm side length). Bone volume fraction and fabric tensor were me...
متن کاملMorphology-based prediction of elastic properties of trabecular bone samples.
Morphological characteristics of the trabecular structure, identified by micro-tomography, can be quantified by volume fraction and second-order fabric tensors. These parameters have been proved to be related to bone structural properties but the formulations so far developed between volume fraction, fabric and elastic properties are bone specific and the coefficients found for one bone are not...
متن کاملTensor Scale: A New Method for Quantifying Structural Anisotropy in Trabecular Bone Images
P. K. Saha, F. W. Wehrli University of Pennsylvania, Philadelphia, PA 19104, United States SYNOPSIS: Trabecular bone (TB) is a network of interconnected struts and plates. During remodeling the bone responds to the forces to which it is subjected and the trabeculae thus follow major stress lines (Wolff’s law). Trabecular anisotropy can be expressed in terms of the fabric tensor. Next to volume ...
متن کاملTrabecular Bone Structure Correlates with Hand Posture and Use in Hominoids
Bone is capable of adapting during life in response to stress. Therefore, variation in locomotor and manipulative behaviours across extant hominoids may be reflected in differences in trabecular bone structure. The hand is a promising region for trabecular analysis, as it is the direct contact between the individual and the environment and joint positions at peak loading vary amongst extant hom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
دوره 30 6 شماره
صفحات -
تاریخ انتشار 2015